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Abstract A new numerical method of solution has been developed for the analysis of deformation 
and stresses in elastic bodies subjected to mixed boundary-conditions. The program is capable of 
dealing with both regular and irregular shapes of boundaries appropriately. An ideal mathematical 
model, based on the displacement potential function, has been used in the finite difference solution. 
The present paper demonstrates the application of the newly developed computational scheme to a 
widely used body with curved boundaries, namely, involute profile spur gear teeth. 
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INTRODUCTION 

 
   The rapid growth in the use of computers in the past 
decade gave rise to the developments of advanced 
computational scheme. But somehow the elasticity 
problems are still suffering from a lot of shortcomings. 
Actually, the management of boundary conditions and 
boundary shapes has remained as the biggest hurdle in 
the solution process of the problems of solid mechanics. 
The necessity of the management of boundary shape has 
lead to the invention of the finite element technique 
with its overwhelming popularity. The other factor of 
impediment to quality solution of elastic problems is the 
treatment of the transition in boundary conditions. 
 
   The difficulties involved in trying to solve practical 
stress problems using the existing approaches, for 
example, the stress function approach [1] and the two 
displacement functions approach [2], are clearly pointed 
out in our previous reports [3-6] and also by Durelli [7]. 
In an attempt to circumvent the difficulties, Dow et al 
[8] introduced a new boundary modeling approach for 
the finite difference applications in solid mechanics. 
They reported that the accuracy of the finite difference 
method in reproducing the state of stresses along the 
boundary was much higher than that of finite element 
method of analysis. 
 
   The displacement potential function formulation of 
two dimensional elastic problems used here was first 
introduced by Uddin [2]; later Idris [3] used it for 
obtaining analytical solutions of mixed boundary value 
elastic problems and Ahmed [4-6] developed the 
computational scheme to extend its use in obtaining the 
numerical solutions of a number of mixed boundary 
value problems. The rationality and reliability of the 
formulation is checked repeatedly by comparing the 

results of mixed boundary value elastic problems 
obtained through this formulation with those available 
in the literature. Recently, our work has been extended 
to include the problems of arbitrary boundary 
shapes[10]. The present paper demonstrates the 
application of the newly developed computational 
scheme to a widely used body with curved boundaries, 
namely, involute profile spur gear teeth.    
 

FORMULATION OF THE PROBLEM 
 
   With reference to a rectangular co-ordinate system, 
the differential equations of equilibrium for two-
dimensional problems in terms of displacement 
components are [1] 
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   These two homogeneous elliptic partial-differential 
equations, with appropriate boundary conditions, have 
to be solved for the case of a two-dimensional problem 
when the body forces are assumed to be absent. In the 
present approach, the problem is reduced to the 
determination of a single function ψ [2] instead of 
finding the two variables u and v, simultaneously, 
satisfying the equilibrium equations (1) and (2). The 
potential function ψ(x,y) is defined in terms of 
displacement components as  
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   When the displacement components in equation (1) 
and (2) are replaced by ψ(x,y), equation (1) becomes an 
identity and the only condition that has to be satisfied 
becomes  
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   Therefore, the problem is formulated in such a way 
that a single function ψ has to be evaluated from the bi-
harmonic equation (4), satisfying the conditions that are 
specified at the boundary. Now, the boundary 
conditions, at any point on an arbitrary-shaped 
boundary, are known in terms of the normal and 
tangential components of displacement, un and ut and of 
stresses, σn and σt . These four components are first 
expressed in terms of u, v, σx, σy, σxy [6]–the 
components of displacements and stress with respect to 
the reference axes x and y and finally, in terms of the 
function ψ , as follows: 
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   The computational work in solving any problem 
remains the same in the present case as it was in the 
case of φ-formulation, since both of them have to satisfy 
the same bi-harmonic equation. But the ψ-formulation is 
free from the inability of the φ-formulation in handling 
the mixed boundary condition.   
 

SOLUTION PROCEDURE 
 
   Finite-difference technique is used to discretize the 
governing bi-harmonic equation and also the differential  
equations associated with the boundary conditions. The 
discrete values of ψ(x,y) at the mesh points of the 
domain concerned (see Fig. 1), is solved from the 
system of linear algebraic equations resulting from the  
discretization of the governing equation and the 
associated boundary conditions. 
   The present scheme involves evaluation of the 
function ψ at the nodal points of rectangular grids over 
a geometrically irregular region, where the boundary 
may not always pass through the rectangular mesh 
points, as shown in Fig.1. The governing bi-harmonic 
equation, which is used to evaluate the function  ψ  only  
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Fig.1 Discretization scheme for the gear tooth    

domain. (m0 = 10 mm,  a = m0,  b = 1.25 m0, θθθθp =200, 
dp =500 mm, load σσσσn /E =  –3e–4). 

 
at the internal mesh points, is expressed in its 
corresponding difference equation using central 
difference operators. The complete finite-difference 
expression of the bi-harmonic equation (4) is given by  
 
    R4{ψ(i-2,j)+ψ(i+2,j)}-4R2(1+R2){ψ(i-1,j)+ψ(i+1,j)} 
        -4(1+R2){ψ(i,j+1)+ψ(i,j-1)}+(6R4+8R2+6)ψ(i,j) 
        +2R2{ψ(i-1,j-1)+ψ(i-1,j+1)+ψ(i+1,j-1) 
        +ψ(i+1,j+1)}+ψ(i,j-2)+ψ(i,j+2)= 0                   (9) 
 
   The corresponding grid structure of the governing 
equation for an arbitrary internal mesh point (i,j) is 
shown in Figure 2. It is thus clear that when the point of 
application (i,j) becomes an immediate neighbour of the 
physical boundary, the equation will involve mesh  
points both interior and exterior to the physical 
boundary. 

Fig.2 Grid structure for the governing bi-harmonic    
equation. 

 
   An imaginary (false) boundary, exterior to the 
reference boundary of the domain is introduced as 
shown in the Fig.1. As the differential equations 
associated with the boundary conditions contain second- 
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and third-order derivatives of the function ψ, the use of 
central difference expressions ultimately leads to the 
inclusion of points exterior to the false boundary. The 
derivatives in the expressions of boundary-conditions 
are thus replaced by their backward- or forward-
difference formulae, keeping the order of the local 
truncation error the same. 
   
  Any boundary-value at a boundary-point, not matching 
with the field grid points, is replaced by the linear 
interpolation of its value at the two or four neighbouring 
grid points, one of which is designated as the reference 
point, which is unique to the boundary point. 
 
   The difference equations of the boundary conditions 
for any arbitrary point on the boundary, not matching 
with the field grid points, can readily be obtained by 
knowing the actual position of the boundary point with 
respect to its reference grid point. Referring to Fig. 3, 
the difference expressions for boundary conditions at 
any arbitrary point P, the location of which is defined by 

Fig. 3 Locators ‘c’ and ‘s’ of the boundary point P 
with respect to its reference point R1. 
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Fig. 4 Grid structure for σσσσn or σσσσt at top-left 
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c and s, is obtained by using linear interpolation  of   the  
expressions of the boundary-values at the points R1, R2, 
R3 and R4. The final form of the grid structure so 
obtained for the stress components for boundary points 
not matching with the field grid points is illustrated in 
Fig.4.    
 
   Since there are two conditions to be satisfied at an 
arbitrary point on the physical boundary of the elastic 
body, two difference equations are assigned to  a   single 
point on the boundary. Out of these two equations, one 
is used to evaluate the function ψ at the reference point 
corresponding to the physical boundary point and the 
remaining one for the corresponding point on the false 
boundary. The discrete values of the potential function, 
ψ (x,y), at mesh points are solved from the system of 
algebraic equations resulting from the discretization of 
the governing equation and the associated boundary 
conditions, by the use of direct method of solution 
(Choleskey’s triangular decomposition method). 
Finally, the same difference equations are organized for 
the evaluation of all the parameters of interest in the 
solution of the body at every interior as well as 
boundary points from the ψ values at mesh points of the 
domain.   
 

RESULTS AND DISCUSSIONS 
 
   Gear tooth has been taken as the arbitrary-shaped 
elastic body, made of ordinary steel (µ=0.3, E=209 
GPa), to obtain the numerical values of stresses in it as 
well as the deformed shape of it under load. 
 
   The conjugate loading on the tooth is approximated 
here by the distribution of normal load over a small 
region at the contact point. It should be mentioned here 
that, because of the Saint-Venant’s principle, the 
distribution of loading at the contact point does not 
affect the stresses in the gear at the critical region of the 
fillets or at any other critical section of the tooth, far 
away from the loading, so long the total loading remains 
the same. Obviously, the stresses at and near the contact 
point is very much dependent on the approximation in 
the assumed distribution of loading at the contact point.  

Fig. 5 Radial stresses (σσσσx/E ) at sections x/h =17,18,19  
and 21 of the gear tooth 
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   The stresses at different sections of the tip-loaded spur 
gear tooth, shown in Fig.1 (referred to as type-A here), 
are presented in Figs 5-6. Overall, the magnitudes of the 
stresses σy and σxy are smaller than that of the radial 
stress σx. Maximum stresses are found to occur around 
the root section of the tooth, and the fillet zone is the 
most critical section in terms of stresses. The magnitude 
of stresses just below the root section is lower and 
gradually decreases towards the center of the gear but 
does not become zero on the bottom boundary, which is 
considered rigidly fixed. The load applied normally to 
the tooth face near the tip has basically two components, 
one of bending, which is compressing the load-free side 
and tensioning the loaded side of the tooth, while the 
other is compressing over the whole section. Thus, the 
combined effect of bending and compression gives 
lower value of tension in the load-side fillet and higher 
value of compression in the load free-side fillet (Fig.5). 

Fig. 6  Shearing stresses (σσσσxy/E ) at sections x/h = 
17,18,19   and 21 of the gear tooth 

 
   The deformed tooth profile of the gear  with respect to 
its initial undeformed profile under the loading at 
different regions are illustrated in Fig.7. The profiles 
show that maximum displacement occurs under the tip 
loading. The tooth deflects in the direction of load and 
the deflection is maximum at the tip and gradually 
decreases towards the root.  
   Another spur gear tooth (profile: involute, m0 = 10 
mm, θp = 200,  a = m0,  b = 1.157 mp,  dp = 200 mm )  is 
considered here for comparing the present ψ-solution 

Fig.7 Tooth profiles under root loading 
(displacements are 100 times enlarged) 

with the published FEM results[9]. The values of radial 
stress at the root section, due to the tip, pitch and root 
loading are presented in Table-1 along with the FEM 
results. The magnitudes of the stresses at the extreme 
end of the root section, especially at the tension side, are 
found to be in good agreement. However, the FEM 
solution [5] predicts lower value of the compressive 
stress at the bottom surface of the root section than that 
 
Table –1 Comparison of present solution for stresses    

with that of FEM solution 
 

Radial stress at the Root section (MPa) 
Loaded surface Load-free surface 

Load 
i

FDM FEM FDM FEM 
Tip 108.45 110.00 -123.90 -127.00 

Pitch 68.87 71.00 -78.13 -100.00 
Root 49.14 55.00 -38.09 -48.00 

 
at points above it. This is highly unlikely, as the bending 
stress is the highest at the bottom, which is further 
enhanced due to the effect of stress concentration at that 
point. 
 
   In our present approach, a single variable is evaluated 
at each point instead of solving for two variables 
simultaneously as in the case of FEM, which reduces 
our computational work drastically. It is noted that the 
time taken to solve a gear tooth (29 X 27 mesh) on a 
personal computer (450 MHz) was found to be 3.91 s. 
The accuracy as well as the reliability of the present 
method has been verified repeatedly by comparing the 
results with available solutions [4,10]. 
 

 
CONCLUSIONS 

 
   The difficulties of managing the boundary shapes in 
finite difference techniques of analysis for which the 
finite-element method of solution of elastic problems 
was invented with a manifold increase of computational 
works and a lot of loss of sophistication is overcome 
here by a novel computational technique in the 
management of boundary shapes in the finite-difference 
method of solution. Both the qualitative and quantitative 
results of the spur gear tooth, and their comparison with 
those of FEM solution establish the reliability and 
suitability of the present numerical model. 
 
 

 NOMENCLATURE 
 
E elastic modulus of the material 
µ Poisson’s ratio 
u,v displacement components in the x- and y- 

directions  
σx, σy normal stress components in the x- and y- 

directions 
φ Airy’s stress function  

Grid position (y/k)
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ψ displacement potential function 
un, ut normal and tangential components of 

displacement on the boundary 
σn, σt normal and tangential components of stress on 

the boundary 
l, m direction cosines of the normal at any point on 

the boundary  
h, k mesh lengths in the x- and y- directions 
R k/h 
a, b addendum and dedendum of the gear 
m0,,dp,θp module, pitch diameter, pressure angle of gear 

tooth 
c, s locators in y- and x- directions, with respect to 

the reference grid point 
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